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Abstract
We comment on several incorrect results given in a recent paper by Jia and
co-workers. In particular, it is pointed out that their discussion with the help of
the shape invariance approach and the supersymmetry WKB approximation is
wrong, since the superpotential W(r) = − h̄√

2µ

(
P

eηr−λ
+Q

)
of the four-parameter

diatomic molecule potential employed in their calculation is not suitable in the
case where the deformation parameter λ is λ < 0 or 0 < λ < 1. The correct
results for the energy levels and wavefunctions can be obtained in standard
quantum mechanics through resolution of Schrödinger’s equation by taking
into account the different ranges of the shape parameter λ of the potential.

PACS number: 03.65.Ge

In a recent paper, Jia and co-workers [1] have discussed by means of the shape-invariance
approach and the supersymmetry WKB approximation the problem of a diatomic molecule
subjected to a four-parameter potential V (r) defined by

v(r) = 2m

h̄2 V (r) = a

(eηr − λ)2
− b

eηr − λ
, (1)

with a, b and η as the real positive constants given by a = 2m

h̄2 De(eα −λ)2, b = 4m

h̄2 De(eα −λ)

and η = α
re

. De, re and λ are the depth of the potential well, the equilibrium distance of
the two nuclei and the dimensionless deformation parameter, respectively, and α is a positive
dimensionless parameter, m being the reduced mass of the molecule.

In this comment, we would like to point out numerous errors in the paper of Jia and
co-workers cited above. On the one hand, by expecting the first equation in (10) of [1] , we
have two solutions for the parameter P without any condition on the sign of the deformation
parameter λ. Therefore, the conditions on the sign of λ in their solutions are not necessary.
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The radial wavefunction (11) in [1] defined by

R(r) = N

r
(eηr − λ)P/ηλ e(Q−P/λ)r (2)

is a physically acceptable solution for the ground state problem only if the boundary condition,

lim
r→∞ rR(r) = 0, (3)

is satisfied. We see that solution (2) fulfils condition (3) when Q < 0. Then, if P < 0 and
Q < 0, the second equation in (10) of [1] cannot be verified. In others words, the nonlinear
Riccati equation (3) in [1] is not satisfied. In this case, one cannot cast the potential (1) into a
supersymmetric form. Consequently, the solution

P = ηλ −
√

η2λ2 + 4a

2
(4)

in (12) of [1] must be discarded.
On the other hand, in order to check the hermiticity of the radial momentum operator

Pr = h̄
i

∂
r∂r

r , let us suppose that r lies in the range (r0,∞) with r0 � 0. Then

0 = 〈R,PrR〉 − 〈R,PrR〉∗

= 4π

∫ ∞

r0

[R∗(r)(PrR(r)) − (PrR(r))∗R(r)]r2 dr

= 4π
h̄

i

∫ ∞

r0

[
∂

∂r
|rR(r)|2

]
dr. (5)

Since Q < 0, rR(r) vanishes as r → ∞, the integral with respect to r is equal to its value at
the point r = r0. The operator Pr is not therefore Hermitian that if one restricts oneself to the
wavefunction R(r) which fulfils the condition

lim
r→r0

rR(r) = 0. (6)

From this condition, it follows that

r0 = 1

η
ln λ � 0, (7)

and consequently

λ � 1. (8)

On the basis of the above remarks, it is clear that one can cast the potential (1) into a
supersymmetric form only for P > 0,Q < 0 and λ � 1 contrary to the statement of the
authors of [1].

As the shape-invariance approach and the supersymmetry WKB approximation are not
convenient for handling the potential (1) whatever the signs of the parameters P and λ may be,
we propose to deal with this diatomic molecule potential through the Schrödinger equation
approach by considering all potential shapes determined by the parameter λ. If λ = 0, we
have the ordinary Morse potential. In the case where λ < 0, the potential (1) may be called
‘generalized Woods–Saxon potential’ and ‘generalized Hulthén potential’ if λ > 0. Therefore,
the potential function (1) represents three kinds of potentials according to the choice of λ.
As the features of these potentials are quite different, it is clear that their treatment does not
enable us to obtain their solutions in a unified manner. In what follows, we will be concerned
in solving the Schrödinger equation[

d2

dr2
+

2

r

d

dr
+

2m

h̄2 E − v(r)

]
R(r) = 0, (9)

when the deformation parameter λ is positive or negative, separately.
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First, for λ < 0, and r ∈ R
+, the diatomic molecule potential (1) is a generalization of

the Woods–Saxon potential. Substituting λ for (−λ) in (1), that is to say the new parameter λ

becomes positive, and introducing the new variable

y = λ

eηr + λ
, (10)

the radial differential equation for u(r) = rR(r) may be written as[
y(1 − y)

d2

dy2
+ (1 − 2y)

d

dy
+

2mE

h̄2η2

1

y(1 − y)
− a

λ2η2

y

1 − y
+

b

λη2

1

1 − y

]
u(r) = 0. (11)

To solve this differential equation, we introduce a new function ϕ(y) through the relation

u(r) = yν(1 − y)µϕ(y). (12)

If we impose on ν and µ the conditions

ν =
√

−2mE

h̄2η2
, (13)

and

µ =
√

a

λ2η2
− b

λη2
− 2mE

h̄2η2
, (14)

the following hypergeometric equation for ϕ(y) is obtained:[
y(1 − y)

d2

dy2
+ [2ν + 1 − (α + β + 1) y]

d

dy
− αβ

]
ϕ(y) = 0, (15)

where

α = ν + µ +
P

λη
, β = ν + µ − P

λη
+ 1, (16)

and

P

λη
= 1

2

(
1 +

√
1 +

4a

λ2η2

)
. (17)

The general solution of the differential equation (15) is then given by

ϕ(y) = A12F1

(
ν + µ +

P

λη
, ν + µ − P

λη
+ 1, 2ν + 1; y

)

+ A2y
−2ν

2F1

(
µ − ν +

P

λη
,µ − ν − P

λη
+ 1, 1 − 2ν; y

)
. (18)

So

u(r) = A1y
ν(1 − y)µ2F1

(
ν + µ +

P

λη
, ν + µ − P

λη
+ 1, 2ν + 1; y

)

+ A2y
−ν(1 − y)µ2F1

(
µ − ν +

P

λη
,µ − ν − P

λη
+ 1, 1 − 2ν; y

)
. (19)

Now, for u(r) to be a physically acceptable solution of equation (11), it has to satisfy the
boundary conditions

lim
r→∞ u(r) = 0, (20)

and

u(0) = 0. (21)
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Also as r → ∞, y → 0 and y−ν → ∞, the boundary condition (20) requires that A2 = 0.
Thus, according to (10), the solution of the radial Schrödinger equation (11) can be written as

u(r)= A1

(
eηr

λ

)µ(
λ

eηr + λ

)µ+ν

2F1

(
ν + µ +

P

λη
, 1 + ν + µ− P

λη
, 2ν + 1; λ

eηr + λ

)
, (22)

where A1 is a constant factor. Using the fact that the hypergeometric function in equation (22)
tends to unity when r → ∞, we obtain

u(r) ∼ A1λ

√
− 2mE

h̄2η2 e
−

√
− 2mE

h̄2 r
. (23)

Thus, we have obtained the correct asymptotic behaviour. In order to get the possible energies
for the bound states, we use the boundary condition (21). We realize that the solution (22)
fulfils condition (21) when

2F1

(
ν + µ +

P

λη
, 1 + ν + µ − P

λη
, 2ν + 1; λ

1 + λ

)
= 0. (24)

It follows that the energy levels can be found from a numerical solution of the transcendental
equation (24).

On making the substitution λ = q eηR with q > 0 in expression (1), we obtain the
following potential which is a special form of the deformed Woods–Saxon potential:

vWS(r) = W0

(eη(r−R) + q)2
− V0

eη(r−R) + q
, (25)

where V0 = b e−ηR , W0 = a e−2ηR and ηR 	 1. The parameter R is the nuclear radius and
η−1 is the thickness of the surface layer.

In this case, we note that λ
1+λ


 1 for ηR 	 1. Then, thanks to Gauss’s transformation
formula [2]

2F1(a, b, c; z) = 	(c)	(c − a − b)

	(c − a)	(c − b)
2F1(a, b, a + b − c + 1; 1 − z) + (1 − z)c−a−b

× 	(c)	(a + b − c)

	(a)	(b)
2F1(c − a, c − b, c − a − b + 1; 1 − z), (26)

it is easy to show that the quantization condition for the bound states (24) takes the following
form:

	(2µ)	
(
1 + ν − P

λη
− µ

)
	

(
ν + P

λη
− µ

)
	(−2µ)	

(
1 + ν − P

λη
+ µ

)
	

(
ν + P

λη
+ µ

) (
e−ηR

q

)−2µ

= −1. (27)

To simplify the discussion of this equation (27), we only consider the case where µ2 < 0, so
that according to equation (14), µ turns out to be imaginary. Writing

µ = iβ, (28)

and defining φ1, φ2 and ψ as


φ1 = arg 	

(
ν +

P

λη
+ iβ

)
,

φ2 = arg 	

(
ν − P

λη
+ iβ

)
,

ψ = arg 	(2iβ),

(29)

we can also express (27) in the form

exp

[
2iψ − 2iφ1 − 2iφ2 − 2i arctan

(
β

ν − P
ηλ

)] (
e−ηR

q

)−2iβ

= −1. (30)
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This leads on to the quantization condition

β(ηR + ln q) + ψ − φ1 − φ2 − arctan

(
β

ν − P
ηλ

)
= (2n + 1)

π

2
, (31)

with n = 0, 1, 2, 3, . . . .

If we make the replacements a = 0 and q = 1, the potential (25) turns to the standard
Woods–Saxon potential [3]. The quantization condition can be deduced from equation (27),

βηR + ψ − 2φ − arctan

(
β

ν

)
= (2n + 1)

π

2
, (32)

where 


β = 1

η

√
V0 +

2mE

h̄2

φ = arg 	 (ν + iβ) ,

ψ = arg 	(2iβ),

(33)

and n = 0, 1, 2, 3, . . . . This last result is in agreement with that of the literature [3].
Now, for λ > 0, we have to inspect the variation of the potential v(r) according to the

values of the parameter λ. We must distinguish two cases. If 0 < λ < 1, v(r) is continuous on
the whole interval R

+. But , if λ � 1, v(r) has a strong singularity at the point r = r0 = 1
η

ln λ,

and in this case, we have two distinct regions, one is defined by the interval ]0, r0[ and the
other by the interval ]r0,∞[. This leads us to deal with the Schrödinger equation for this
potential in each case.

Consider first the case in which λ � 1. In this case, we will discuss the potential (1) only
in the interval ]r0,∞[ since, in the other interval, the solution cannot be analytically found.

Changing the independent variable r in (9) to y given by

y = λ e−ηr ,

the radial differential equation for u(r) = rR(r) becomes[
y2 d2

dy2
+ y

d

dy
+

2mE

h̄2η2
− a

η2λ2

y2

(1 − y)2 +
b

η2λ

y

1 − y

]
u(r) = 0. (34)

Introducing a new function ϕ(y) defined by the relation

u(r) = yν(1 − y)µϕ(y), (35)

and using the notation


ν =
√

−2mE

h̄2η2
, µ = P

ηλ
= 1

2

(
1 +

√
1 +

4a

η2λ2

)
,

ε =
√

ν2 +
a

η2λ2
+

b

η2λ
, α′ = ν +

P

ηλ
+ ε, β ′ = ν +

P

ηλ
− ε,

(36)

we obtain from (34) the hypergeometric differential equation[
y(1 − y)

d2

dy2
+ [2ν + 1 − (α′ + β ′ + 1)y]

d

dy
− α′β ′

]
ϕ(y) = 0. (37)

The general solution of this equation can be written in the form

ϕ(y) = B1 2F1

(
P

λη
+ ν + ε,

P

λη
+ ν − ε, 2ν + 1; y

)

+ B2y
−2ν

2F1

(
P

λη
− ν + ε,

P

λη
− ν − ε, 1 − 2ν; y

)
. (38)
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To find the physically acceptable solution of (34), we have to impose the boundary conditions

lim
r→r0

u(r) = 0, (39)

and

lim
r→∞ u(r) = 0. (40)

Also as r → ∞, y → 0 and y−ν → ∞, the boundary condition (40) requires that
B2 = 0. Thus both boundary conditions will be satisfied if we choose B2 = 0 and
P
λη

+ ν + ε = −nr (nr = 0, 1, 2, . . .). The possible energies for the bound states are then
given by

Enr
= − h̄2

2m
Q2, (41)

and by using (26) the corresponding normalized wavefunctions can be expressed in the form

uλ�1
nr

(r) =
[
−2Q(P + nrλη − λQ)

(P + nrλη)

	
(
nr + 2P

ηλ

)
	

(
nr + 2P

ηλ
− 2Q

η

)
nr !	

(
nr − 2Q

η
+ 1

)
] 1

2

× 1

	
(

2P
ηλ

) (1 − λ e−ηr )
P
ηλ (λ e−ηr )

− Q

η 2F1

(
−nr, nr +

2P

ηλ
− 2Q

η
,

2P

ηλ
; 1 − λ e−ηr

)
,

(42)

with

Q = (P + nrλη)2 − a − λb

2λ(P + nrλη)
. (43)

We realize that (42) fulfils condition (40) when

Q < 0. (44)

Therefore, it is seen from (43) and (44) that

nr <

{√
a + λb − P

ηλ

}
. (45)

Here {k} denotes the largest integer inferior to k.
Consider now the case in which 0 < λ < 1. The analysis presented above holds; but

in this case, we prefer to introduce the new variable y = 1 − λ e−ηr . Similarly, by using the
boundary conditions u(0) = 0 and limr→∞ u(r) = 0, we show that the solution of the radial
differential equation has the form

u(r) = C1(1 − λ e−ηr )
P
ηλ (λ e−ηr )ν 2F1

(
P

λη
+ ν + ε,

P

λη
+ ν − ε; 2

P

λη
; 1 − λ e−ηr

)
, (46)

where C1 is a constant factor. Then, the energy spectrum can be found from a numerical
solution of the transcendental equation

2F1

(
P

λη
+ ν + ε,

P

λη
+ ν − ε, 2

P

λη
; 1 − λ

)
= 0. (47)

In conclusion, the shape-invariance approach and the supersymmetry WKB approximation
employed by Jia and co-workers are shown inappropriate since only one of their solutions
remains valid when λ � 1 and in the interval

]
1
η

ln λ,∞[
. The previous analysis reveals that

the diatomic molecule potential cannot be cast in the supersymmetric quantum mechanics
formalism whatever the parameter λ may be.
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